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ABSTRACT.—Use of point-count surveys is a popular method for collecting data on abun-
dance and distribution of birds. However, analyses of such data often ignore potential dif-
ferences in detection probability. We adapted a removal model to directly estimate detection
probability during point-count surveys. The model assumes that singing frequency is a ma-
jor factor influencing probability of detection when birds are surveyed using point counts.
This may be appropriate for surveys in which most detections are by sound. The model re-
quires counts to be divided into several time intervals. Point counts are often conducted for
10 min, where the number of birds recorded is divided into those first observed in the first
3 min, the subsequent 2 min, and the last 5 min. We developed a maximum-likelihood es-
timator for the detectability of birds recorded during counts divided into those intervals.
This technique can easily be adapted to point counts divided into intervals of any length.
We applied this method to unlimited-radius counts conducted in Great Smoky Mountains
National Park. We used model selection criteria to identify whether detection probabilities
varied among species, throughout the morning, throughout the season, and among different
observers. We found differences in detection probability among species. Species that sing
frequently such as Winter Wren (Troglodytes troglodytes) and Acadian Flycatcher (Empidonax
virescens) had high detection probabilities (;90%) and species that call infrequently such as
Pileated Woodpecker (Dryocopus pileatus) had low detection probability (36%). We also found
detection probabilities varied with the time of day for some species (e.g. thrushes) and be-
tween observers for other species. We used the same approach to estimate detection prob-
ability and density for a subset of the observations with limited-radius point counts. Received
23 February 2000, accepted 9 October 2001.

RESUMEN.—El muestreo mediante conteos por punto es un método popular para colectar
datos sobre distribución y abundancia de aves. Sin embargo, los análisis de estos datos ge-
neralmente ignoran diferencias potenciales en la probabilidad de detección. Aquı́ adaptamos
un modelo de remoción para estimar directamente la probabilidad de detección de aves en
conteos por punto. El modelo supone que la frecuencia con que las aves cantan es un factor
principal que influencia la probabilidad de detección. Esto puede ser apropiado en muestreos
en donde la mayorı́a de las detecciones son por sonido. El modelo requiere que los conteos
sean divididos en varios intervalos de tiempo. Los conteos por punto duran por lo general
10 min, donde el número de aves registradas es dividido en aquellas observadas durante los
primeros 3 min, los 2 min subsecuentes y los últimos 5 min. Desarrollamos un estimador de
máxima probabilidad en relación a la detectabilidad de las aves registradas durante conteos
divididos en dichos intervalos. Esta técnica puede ser fácilmente adaptada a conteos por
punto divididos en intervalos de cualquier duración. Aplicamos este método a conteos de
radio ilimitado realizados en el Parque Nacional Great Smoky Mountains. Empleamos cri-
terios de selección del modelo para identificar si las probabilidades de detección variaban
entre especies, a lo largo de la mañana, a lo largo de las estaciones y entre diferentes obser-
vadores. Encontramos diferencias entre las especies en la probabilidad de detección. Las es-
pecies que cantan con frecuencia, como Troglodytes troglodytes y Empidonax virescens, tuvieron
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una alta probabilidad de detección (;90%), mientras que las especies que realizan pocas
llamadas, como Dryocopus pileatus, tuvieron una baja probabilidad de detección (36%). En-
contramos también que la probabilidad de detección varió en relación a la hora del dı́a para
algunas especies (e.g. Túrdidos) y entre observadores para otras. Empleamos el mismo pro-
cedimiento para conteos por punto de radio limitado para estimar la probabilidad de de-
tección y la densidad en un subconjunto de las observaciones.

POINT-COUNT SURVEYS are routinely used to
gather information about breeding birds. This
technique involves using a standardized meth-
odology to record all birds heard or seen dur-
ing a fixed amount of time at many widely
spaced count locations. This method is widely
used because it is an efficient way to collect
count data over a large area. However, there is
considerable controversy about what inferenc-
es may be made on the basis of such data (e.g.
see Burnham 1981, Johnson 1995).

Typically most investigators consider point-
count surveys to represent an index of bird
abundance that can be used to make compari-
sons between datasets (Lancia et al. 1994, Ralph
et al. 1995). That requires an assumption that
the probability of detection is the same for each
data set being compared. For example, if two
habitat types were sampled, the ratio of the
counts would reflect the ratio of abundance
only if the detection probabilities were the
same in both habitats. Similarly, if the same lo-
cation were sampled in two different years and
there was a change in the number of birds
counted, this change could only be interpreted
as a change in population size if the detection
probabilities were the same in both years. In
that way, counts are often used as estimates of
relative abundance.

Criticism of such analyses that use counts as
an index centers on the assumption of equal de-
tectability between datasets (Burnham 1981,
Wilson and Bart 1985, Johnson 1995, Barker and
Sauer 1995). Such criticism may be valid be-
cause many factors have been shown to affect
detectability. For example, numbers of birds
detected on point-count surveys can be affect-
ed by time of season (e.g. Best 1981, Ralph 1981,
Skirvin 1981) and time of day (e.g. Robbins
1981, Skirvin 1981, Bart and Herrick 1984) pre-
sumably because of variations in singing fre-
quency. Wilson and Bart (1985) found that the
singing frequency of House Wrens (Troglodytes
aedon) changed throughout the nesting cycle.
McShea and Rappole (1997) found singing fre-
quency for Ovenbird, Wood Thrush, and

Northern Cardinal (Cardinalis cardinalis) varied
with distance to observer and with habitat type
(fragmented vs. contiguous forest). Physical at-
tributes of habitat such as foliage density can
also affect an observer’s ability to hear and
identify bird song (Richards 1981). Differences
in detectability are also related to skill and ex-
perience of observers (Sauer et al. 1994). Vari-
ations in detectability due to those and other
factors have cast doubt on the use of counts as
indexes.

One method for overcoming the assumption
of equal detectability is distance sampling. It
relies on the notion that detectability declines
with distance from the observer (Reynolds et
al. 1980, Buckland et al. 1993). The variable cir-
cular plot technique uses detection distance to
estimate the detection probability and bird
density from point-count surveys. However,
estimating distances to all birds seen or heard
can be difficult and imprecise. A method that
does not require distance measures was re-
cently developed by Nichols et al. (2000). That
method estimates detection probabilities using
two observers collecting data simultaneously
on point-count surveys.

In point count surveys where birds are pri-
marily detected by song, probability that a bird
will be recorded during a count can be thought
of as the product of two probabilities: (1) the
probability the bird sings during the count, and
(2) the probability the bird is detected given
that it sings. Distance sampling models the de-
cline in the second component of the probabil-
ity (that a bird is detected given that it sings)
with increasing distance from the observer
(Reynolds et al. 1980, Buckland et al. 1993).
Similarly, the double-observer approach (Nich-
ols et al. 2000) models probability that a bird is
recorded given that it could be detected by at
least one observer. To be recorded by one ob-
server, a bird must sing. Neither of those ap-
proaches deals with the first component of de-
tection probability. We propose that if counts
are separated into time intervals, we can esti-
mate the product of both components of detec-
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tion probability using the approach of a remov-
al experiment (Moran 1951, Seber 1982). A
removal experiment typically traps and re-
moves animals from a population in discrete
time periods (trap sessions). As animals are re-
moved from the population, fewer will be avail-
able for capture in the subsequent trap ses-
sions. The decline in numbers caught through
time can then be used to estimate the initial
population size.

The simplest application of this approach to
point counts can be illustrated with just two
time intervals of equal duration. Suppose an
observer records all birds seen or heard in the
interval (0, t) and continues the point count, re-
cording any additional birds detected in the in-
terval (t, 2t). At the end of the point count, we
define x1 as number of birds counted in the first
time interval and x2 as number of new birds
(not detected in period 1) detected in the sec-
ond time interval. The expected value of the
random variable x1 is E(x1) 5 Np1 where N is the
total number of birds within the detection ra-
dius of the observer and p1 is the detectability
for an individual bird in the first time period.
The expected value of the second random var-
iable x2 is E(x2) 5 N(1 2 p1)p2, where p2 is the
detectability in the second time period. The (1
2 p1) term is needed because in order for a bird
to be first counted in the second time interval,
it must have been missed in the first time in-
terval. Let us assume that detectability for the
two intervals is the same (i.e. p1 5 p2) because
the duration of each interval is the same. Solv-
ing the above equations produces the following
moment estimator for N (Zippin 1958):

2x1N̂ 5 (1)
x 2 x1 2

Note that the estimator can fail if x1 # x2 which
is possible when p is small. This is a good ap-
proximation to the maximum-likelihood esti-
mator discussed in Otis et al. (1978), which can
be computed numerically using program CAP-
TURE (White et al. 1982).

We present this two-sample removal esti-
mator to illustrate the approach with the sim-
plest possible situation. In practice, we recom-
mend using more than two intervals, which
permits us to relax the assumption of equal de-
tectability (p1 5 p2). Program CAPTURE can
produce maximum-likelihood estimates for N,
as well as the estimated variance of N̂, using

model Mb (described in Otis et al. 1978 and
White et al. 1982), as long as each of the time
intervals is the same length. Model Mb esti-
mates the capture probability of unmarked an-
imals in a closed population capture-recapture
experiment. Here we present a more general
model that allows for the count intervals to
have variable length (i.e. the detection proba-
bilities in the different intervals need not be the
same). This model is therefore a generalization
of the model Mb. We illustrate the technique
with several examples derived from field data.

METHODS

We developed models capable of estimating de-
tectability when a point count is divided into three
or more intervals of variable length. A common
method for recording data at point counts is to sep-
arate number of birds counted into those first ob-
served within the first 3 min, those first observed
within the next 2 min, and those first observed with-
in the final 5 min. This procedure was recommended
by Ralph et al. (1995) and was originally designed to
allow results from 10 min counts to be comparable
with those from studies employing 3 and 5 min
counts. We define x1 as number of birds counted in
the first interval, x2 as number of birds counted in the
second interval, x3 as number of birds counted in the
third interval, and x. as total number of birds count-
ed in the full 10 min (x. 5 S xi).3

i51

Estimating detectability. We developed two esti-
mators for detection probability, one that allows for
heterogeneity (variation in the detectability within
the population of birds sampled) and one that does
not. We describe the most general model (Mc) that in-
corporates heterogeneity first because the reduced
model (M) is a simplified version of this model.

First we divide the population of birds (N) within
the detection radius of an observer into two groups.
Group 1 is composed of the birds that are easily de-
tected and group 2 includes those more difficult to
detect. The probability that a randomly selected bird
is a member of group 2 (hence the expected propor-
tion of the population in group 2) is defined as c. We
assume that all members of group 1 will be detected
within the first time interval. We also define proba-
bility of failing to detect a member of group 2 within
one minute as q. The expected value for number of
birds detected within the first time interval of three
minutes is therefore:

3E(x ) 5 N(1 2 c) 1 Nc(1 2 q )1

35 N(1 2 cq ) (2)

All of the members of group 1 plus some from group
2 will be detected in that interval. The probability
that a bird in group 2 will be missed during the first
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3 min is q3, and the complement of this (1 2 q3) is thus
the probability of being detected at least once in the
first interval. Similarly, the expected value of the
number of birds initially detected within the next
time interval (2 min) is:

3 2E(x ) 5 Ncq (1 2 q )2 (3)

The birds first recorded during the middle interval
must be missed in the first 3 min and not missed in
the subsequent 2 min. Thus, these are all members of
group 2. Finally, expected number of birds counted
in the last 5 min of the count is:

5 5E(x ) 5 Ncq (1 2 q )3 (4)

For a bird to be first counted in the final interval, it
must be a member of group 2, and it must be missed
during the first 5 min and not missed during the last
5 min. The expected total number of birds counted
by the end of the full 10 min is:

10E(x.) 5 N [c(1 2 q ) 1 (1 2 c)]

105 N(1 2 cq ) (5)

The cumulative probability of detecting a bird dur-
ing the full 10 min count is thus p 5 1 2 cq10. This
can be described as a full multinomial distribution
with probability density function:

f (x , x , x z N )1 2 3

N!
3 x 3 2 x1 25 [1 2 cq ] [cq (1 2 q )]

x !x !x !(N 2 x.)!1 2 3

5 5 x 10 N2x.33 [cq (1 2 q )] [cq ] (6)

However, N cannot be directly observed, so we con-
dition on the total number of birds counted (x.). The
conditional probability that bird y was detected
within the first interval given that it was detected in
the entire 10 min is:

31 2 cq
p 5 P(y ∈ x z y ∈ x.) 5 (7)1 1 101 2 cq

The conditional probability of first detecting bird y
within the second interval given that it was detected
in the entire 10 min is:

3 2cq (1 2 q )
p 5 P(y ∈ x z y ∈ x.) 5 (8)2 2 101 2 cq

Finally the conditional probability of first detecting
bird y in the third interval given that it was detected
in the entire 10 min is:

5 5cq (1 2 q )
p 5 P(y ∈ x z y ∈ x.) 5 (9)3 3 101 2 cq

Therefore the conditional multinomial has the prob-
ability density function:

x.!
x x x1 2 3f (x , x , x z x.) 5 (p ) (p ) (p ) (10)1 2 3 1 2 3x !x !x !1 2 3

Now we can find the estimates of c and q that max-
imize the following likelihood function:

L(c, q z x , x , x )1 2 3

x x x1 2 33 3 2 5 51 2 cq cq (1 2 q ) cq (1 2 q )
} (11)

10 10 10[ ] [ ] [ ]1 2 cq 1 2 cq 1 2 cq

We used program SURVIV (White 1983) to find the
values of c and q that maximized the above likelihood
function. SURVIV also computed associated esti-
mates of the variances and covariance of c and q. We
then reparameterized the SURVIV model to estimate
the total detectability for the full 10 min (p̂) and its
associated standard error. This parameter, p, incor-
porates both group membership and the group de-
tection probabilities and specifies the probability
that an individual bird randomly selected from N is
detected during the 10 min sampling period (p 5 1
2 cq10).

This model represents a modified special case of
more general mixture models in which detectability
of members of group 1 is estimated (not assumed to
be one, as is done here). Norris and Pollock (1996)
and Pledger (2000) fit full two-point mixture models
to capture–recapture and removal data for closed
populations. Because counts were divided into three
intervals in our example, we were unable to fit those
full two-point mixture models. At least four intervals
are necessary to use the full two-point mixture
models.

The model described here represents the most gen-
eral (fully parameterized) model possible under this
sampling design. This model can then be tested
against more specific (reduced parameter) models.
One such model constrains c to be equal to 1 and thus
represents a model that does not attempt to incor-
porate heterogeneity (i.e. all birds are members of
group 2). In addition, when different datasets are
compared, the most general model will treat the es-
timates of c and q differently for each dataset. A more
specific model will constrain the estimates of both c
and q to be equal for both datasets (c1 5 c2; q1 5 q2).
We used Akaike’s Information Criterion (AIC; Burn-
ham and Anderson 1998) for model selection and
chose the model that most parsimoniously fit the
data (i.e. model with minimum AIC).

Estimating density. Once detection probability is
estimated with either model, abundance can then be
estimated as:

x.
N̂ 5 (12)

p̂

When limited-radius point counts are used, this es-
timate of abundance can be used to estimate density
simply as:
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N̂
D̂ 5 (13)

A

where A is the total area sampled (sum of the areas
within each limited-radius count). Assuming that
the counts (x.) are from a binomial distribution and
independent of p̂, an estimate of the variance of den-
sity at the sampled points is (after Nichols et al.
2000):

2(x.) VAR( p̂) (x.)(1 2 p̂)̂ˆVAR(D) 5 1 (14)̂
2 4 2 2A p̂ A p̂

If the estimated density were to be extrapolated to a
defined area from which counts were sampled, a
more formal estimate of the variance of density
should include the variance associated with differ-
ences in counts over the sampled locations within the
larger space (e.g. Thompson 1992). For the purposes
of illustration in this paper, we will only consider the
sampling variance represented by Eq. 14.

Model assumptions are as follows:

1. There is no change in the population of
birds within the detection radius during the
point count (i.e. the population is closed).

2. There is no double-counting of individuals.
3. All members of group 1 are detected in the

first interval.
4. All members of group 2 that have not yet

been detected have a constant per minute
probability of being detected.

5. If counts with limited-radius are used, ob-
servers accurately assign birds to within or
beyond the radius used.

Field data. We applied this approach to data col-
lected in Great Smoky Mountains National Park from
1993 to 1995. We conducted counts at 258 locations up
to three times within each year for a total of 1,221 point
counts (some locations were not surveyed in every
year). Surveys were located in closed-canopy decidu-
ous hardwood forests. In those areas with high canopy
(20–30 m) and dense vegetation, most detections were
recorded by ear. Our population of interest was there-
fore vocalizing birds (i.e. birds with non-negligible
probability of vocalizing during the period of the point
count). For the four songbird species to be discussed at
length, Ovenbird, Black-throated Green Warbler, Red-
eyed Vireo, and Black-throated Blue Warbler (see Ap-
pendix for scientific names), we recorded singing
males, ignoring nonsong vocalizations. For each count,
the total number of birds counted was divided into
those detected within the first 3 min, the subsequent 2
min, and the final 5 min as described above. In addi-
tion, birds were recorded as within 50 m from the ob-
server or beyond 50 m.

Unlimited-radius counts. For the 15 most frequent-
ly detected species, we fit the data to four models.
Model Ms

c, the most general model, estimated sepa-

rate parameters for each species and included het-
erogeneity (using the term c described above). Model
Mc allowed heterogeneity among individuals but did
not fit separate parameters for the different species.
Model Ms fit the data separately for the different spe-
cies, but had the constraint c 5 1. Thus this model
did not incorporate heterogeneity. And model M,
with only a single parameter, did not account for het-
erogeneity (c 5 1), nor did it fit different estimates of
q for each species.

For each of the four most frequently recorded spe-
cies (Ovenbird, Black-throated Green Warbler, Red-
eyed Vireo, and Black-throated Blue Warbler) we ex-
amined how temporal changes in bird activity
influenced detectability. We compared detectability
between those points conducted early in the morn-
ing (sunrise to 0745 EST; 610 points) with those con-
ducted late in the morning (0746 to 1000; 611 points).
If birds sing more frequently in early morning, we
would expect them to have higher detectabilities at
that time. In addition to the four species above, we
also examined detection probability using combined
data for Wood Thrush and Veery. Thrushes sing
more frequently early in the morning than later in
the day. Therefore they should have a higher detec-
tion probability earlier in the morning. We tested
each of four models with data from the four most
common species and the combined data for the
thrushes. Model Mt

c incorporated heterogeneity and
estimated different parameters for early morning
and late morning. Model Mc incorporated heteroge-
neity but did not distinguish between early and late
morning counts. Model Mt estimated different pa-
rameters for early and late morning, but did not in-
corporate heterogeneity. And model M did not in-
corporate heterogeneity or distinguish between
early and late morning.

We also compared detectability between counts
conducted at different times during the breeding
season. Different bird species may have different
peaks in singing frequency due to differences in
nesting behavior, which will change their detectabil-
ity. Species that nest early and attempt only one
brood may have reduced singing frequencies by late
spring compared to species that raise multiple
broods. We separated the counts conducted on or be-
fore 20 May (early spring; 563 points), and those con-
ducted after 20 May (late spring; 658 points). We fit
four models to examine seasonal changes in detect-
ability. Model Mb

c incorporated heterogeneity and
estimated different parameters for early and late
spring. Model Mc incorporated heterogeneity but did
not distinguish between early and late spring. Model
Mb estimated different parameters for the early and
late spring, but did not incorporate heterogeneity.
And model M did not incorporate heterogeneity or
distinguish between early and late spring.

Observer variability related to differences in skill
or hearing acuity is another potential factor affecting
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FIG. 1. Estimated detection probability during
unlimited-radius counts for the 15 most frequently
encountered species, ordered from most common
(left) to least common (right). Error bars represent
one estimated standard error. See Appendix for sci-
entific names and count data.

detection probability. We compared detectability us-
ing the three observers for which we had the largest
number of counts (observer 1 conducted 255 counts,
observer 2 conducted 200, and observer 3 conducted
178). Again we fit four models for data from the four
most common species. Model Mo

c incorporated het-
erogeneity and estimated different parameters for
the different observers. Model Mc incorporated het-
erogeneity but did not distinguish between observ-
ers. Model Mo estimated different parameters for
each observer, but did not incorporate heterogeneity.
And model M did not incorporate heterogeneity or
distinguish between observers.

The analyses described above only address issues
of detection probability. For those analyses, each
point count was considered an independent trial
with respect to the estimate of detection probability,
and unlimited-radius counts were used. Multiple
counts were conducted at the same locations so we
were not able to estimate abundance or density.

Limited-radius counts. To estimate abundance and
density, we restricted the analysis to two visits to
each location in 1994 (155 locations). Each visit was
treated as a separate sampling of abundance for the
155 counts. Only birds detected within 50 m of the
observer were included because an estimate of den-
sity requires a measurement of the area sampled.
Counts were separated by approximately two weeks
between the first and second visit to each point lo-
cation. It therefore seemed reasonable to expect the
true abundance (and density) to be the same for
those two visits. The same four species were used in
this analysis. For each species, model selection was
performed to choose between a model that incorpo-
rated heterogeneity (Mc) and a model that did not
(M) as described above. Using the estimated detec-
tion probability (p̂) from the most parsimonious
model, we estimated abundance and density for each
visit. We compared estimated density between visits
for each species by estimating difference between
densities for the two periods.

RESULTS

For the 15 most frequently detected species,
the most parsimonious model was Ms

c (AIC val-
ues: Ms

c 5 249.5, Mc 5 370.3, Ms 5 570.7, and
M 5 728.8). Thus, there was strong evidence of
differences in estimated detectability for differ-
ent species (Fig. 1). Also, heterogeneity ap-
peared to be an important component of the
detectability requiring an estimate for param-
eter c for each species.

We did not find evidence of a change in de-
tection probability at different times of the
morning for three species. Model Mc received
the most support for the data for Ovenbird,

Black-throated Green Warbler, and Red-eyed
Vireo. However, model Mt

c received the most
support for Black-throated Blue Warbler and
the combined data for thrushes (Wood Thrush
and Veery). Estimated detection probability ap-
peared to decrease later in the morning for
those species (Table 1). We did not find evi-
dence of an influence of time of season on de-
tectability for three of the four species tested.
Model Mc received the most support for the
data for Ovenbird, Black-throated Green War-
bler, and Black-throated Blue Warbler. Model
Mb

c was best supported for Red-eyed Vireo;
however the estimated detection probability for
early spring was only slightly lower than that
for late spring (Table 2).

We found evidence of different detection
probabilities for different observers for two
species (model Mo

c received the most support).
Observer 1 had higher estimated detectability
than observers 2 and 3 for Ovenbird and Black-
throated Green Warbler. Detectability for Red-
eyed Vireo and Black-throated Blue Warbler
did not appear to vary among observers (model
M received the most support; Table 3). When
testing Black-throated Blue Warbler, we were
unable to estimate the parameters for each ob-
server under model Mo

c due to the small num-
ber of detections during the middle time inter-
val by observer 2. Model Mc was best supported
when observers 1 and 3 were compared, sug-
gesting no difference in estimated detection
probability for these two observers.
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TABLE 1. Detection probabilities during unlimited-radius counts conducted in early (at or before 0745) and late
(after 0745) morning. AIC for model that received the most support is underlined. Selection of model Mt

c in-
dicates different estimated detection probabilities for early and late morning. See text for description of models.

Time of count

Countsa

x1 x2 x3

AIC of models

Mt
c Mc Mt M

p̂ ( )ŜE

Model Mt
c Model Mc

Ovenbird
Early morning
Late morning

1,003
836

170
134

233
216

35.5 32.9 115.6 114.4 0.90 (0.03)
0.83 (0.08)

0.87 (0.03)
—

Black-throated Green Warbler
Early morning
Late morning

591
631

123
118

403
202

34.7 31.4 89.1 87.5 0.80 (0.07)
0.78 (0.08)

0.79 (0.05)
—

Red-eyed Vireo
Early morning
Late morning

502
426

101
90

149
143

33.6 30.5 63.5 62.5 0.86 (0.05)
0.81 (0.07)

0.84 (0.04)
—

Black-throated Blue Warbler
Early morning
Late morning

287
405

74
65

100
140

32.5 35.2 69.3 67.6 0.87 (0.05)
0.51 (0.29)

0.76 (0.08)
—

Thrush species (Wood Thrush and Veery)
Early morning
Late morning

376
199

66
41

89
74

31.3 33.6 50.7 55.7 0.90 (0.04)
0.72 (0.17)

0.85 (0.05)
—

a xi is number of birds first detected in the ith interval.

TABLE 2. Detection probabilities during unlimited-radius counts conducted in early (on or before 20 May)
and late (after 20 May) spring. AIC for model that received the most support is underlined. Selection of
model Mb

c indicates different estimated detection probabilities for early and late spring. See text for de-
scription of models.

Time of count

Countsa

x1 x2 x3

AIC of models

Mb
c Mc Mb M

p̂ ( )ŜE

Model Mb
c Model Mc

Ovenbird
Early spring
Late spring

927
912

163
141

223
226

35.5 32.8 116.3 114.3 0.90 (0.03)
0.84 (0.05)

0.87 (0.03)
—

Black-throated Green Warbler
Early spring
Late spring

629
593

131
110

209
194

34.7 31.4 89.4 87.5 0.81 (0.06)
0.76 (0.09)

0.79 (0.05)
—

Red-eyed Vireo
Early spring
Late spring

443
485

103
88

159
133

33.6 35.0 63.7 67.0 0.82 (0.06)
0.85 (0.06)

0.84 (0.04)
—

Black-throated Blue Warbler
Early spring
Late spring

289
403

56
83

109
131

32.5 29.8 63.2 62.1 0.65 (0.20)
0.82 (0.07)

0.76 (0.08)
—

a xi is number of birds first detected in the ith interval.

Estimating density. Using the subset of in-
dependent limited-radius counts, the best sup-
ported model for Ovenbird and Black-throated
Green Warbler included heterogeneity (model
Mc) for both visits. The selected model for Black-
throated Blue Warbler did not include hetero-
geneity (model M) for either visit. And the best
supported model for Red-eyed Vireo was M for
the first visit and Mc for the second visit. Esti-

mates of detection probability ranged from 0.81
(0.19 ) for Red-eyed Vireo to 0.97 (0.02 ) for̂ ̂SE SE
Black-throated Blue Warbler (Table 4). And the
estimates of density ranged from 0.49 (0.02 )ŜE
singing birds per hectare for Black-throated
Blue Warbler to 1.93 (0.16 ) singing birds perŜE
hectare for Ovenbird. Estimates of the difference
in density between visits (DD̂) ranged from 0.04
birds per hectare for Black-throated Blue War-
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TABLE 3. Detection probabilities during unlimited-radius counts conducted by different observers. AIC for
model that received the most support is underlined. Selection of model Mo

c indicates different estimated
detection probabilities for different observers. See text for description of models.

Observer

Countsa

x1 x2 x3

AIC of models

Mo
c Mc Mo M

p̂ ( )ŜE

Model Mo
c Model Mc

Ovenbird
Observer 1
Observer 2
Observer 3

451
319
261

57
49
56

83
78
83

47.2 53.6 92.4 102.8 0.90 (0.05)
0.84 (0.09)
0.85 (0.07)

0.87 (0.04)
—
—

Black-throated Green Warbler
Observer 1
Observer 2
Observer 3

295
187
146

46
44
37

62
65
59

45.4 51.6 60.1 71.0 0.91 (0.05)
0.84 (0.08)
0.80 (0.12)

0.86 (0.05)
—
—

Red-eyed Vireo
Observer 1
Observer 2
Observer 3

218
151
137

27
32
31

54
49
47

43.8 42.8 67.4 67.7 0.68 (0.29)
0.83 (0.11)
0.83 (0.11)

0.80 (0.08)
—
—

Black-throated Blue Warblerb

Observer 1
Observer 3

153
123

21
22

36
39

28.0 25.7 42.0 41.8 0.81 (0.17)
0.76 (0.21)

0.79 (0.13)
—

a xi is number of birds first detected in the ith interval.
b Models could not estimate separate parameters for observer 2.

TABLE 4. Estimation of density for two visits to the same count locations in 1994. AIC for model that received
the most support is underlined. The low-AIC model was used to estimate p and D. Confidence interval
(95%) for estimated difference in density, DD̂, included zero for all species.

Visit

Countsa

x1 x2 x3

AIC

Mc M p̂ ( )ŜE
D̂ ( )ŜE

Birds ha21
DD̂ (95% CI)

Birds ha21

Ovenbird
First visit
Second visit

141
152

29
23

39
29

14
14

16
17

0.89 (0.07)
0.93 (0.06)

1.93 (0.16)
1.81 (0.11)

0.12 (20.27, 0.51)
—

Black-throated Green Warbler
First visit
Second visit

96
118

18
26

26
32

14
14

15
14

0.87 (0.11)
0.91 (0.06)

1.32 (0.17)
1.58 (0.11)

0.26 (20.14, 0.66)
—

Red-eyed Vireo

First visit
Second visit

64
94

19
15

25
25

13
13

12
17

0.92 (0.03)
0.81 (0.19)

0.96 (0.04)
1.35 (0.31)

0.39 (20.23, 1.01)
—

Black-throated Blue Warbler
First visit
Second visit

43
35

11
9

9
12

12
12

10
10

0.97 (0.02)
0.93 (0.04)

0.53 (0.01)
0.49 (0.02)

0.04 (20.01, 0.10)
—

a xi is number of birds first detected in the ith interval.

bler to 0.39 birds per hectare for Red-eyed Vireo.
The associated 95% confidence intervals for DD̂
included zero for all species.

DISCUSSION

Application of a removal model to point
count surveys divided into time intervals of-
fers a promising new approach for estimating

detectability. Detectability estimates allow
for comparisons among datasets without
having to resort to using counts as an index
of abundance. One strength of that procedure
is that it can be applied to existing data as we
have done here. In addition, it may be in-
corporated into future studies with no addi-
tional cost and without much additional
training.
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Many of the differences we observed in de-
tectability were probably due to differences in
singing frequency. The species with the highest
estimated detectabilities were Winter Wren (p̂
5 0.89 6 0.06 ) and Acadian Flycatcher (p̂ 5ŜE
0.91 6 0.05 ). Winter Wrens and Acadian Fly-ŜE
catchers sing frequently making them easy to
detect on point count surveys. Conversely, Pi-
leated Woodpeckers, which give loud but infre-
quent vocalizations, had the lowest detectabil-
ity estimate (p̂ 5 0.36 6 0.33 ) among the 15ŜE
most frequently detected species. We also
found a decrease in detection probability for
thrushes from early morning to late morning
counts (Table 1), probably due to a tendency for
thrushes to sing most frequently early in the
morning and only sporadically later in the day.

We found differences in the detection prob-
abilities between observers for certain species.
That may reflect differences in hearing abilities
among observers. Different observers may have
different sensitivities to songs of particular
species, allowing them to detect a greater pro-
portion of those species than other observers.
Observers may also show favoritism to some
species, recording those species preferentially
when uncertain about identification (Bart
1985). Detectability of a species declines with
increasing density of that species, and that may
be especially true when observers are record-
ing multiple species at the same time (Scott and
Ramsey 1981, Bart and Shoultz 1984). The ob-
servers in our field study recorded all individ-
uals of all species detected. The average num-
ber of detections per point count was high (11.8
birds) and observers’ abilities to discriminate
individuals may have been compromised on
some counts. We found that observers often fo-
cused their attention on one species at a time to
help them discriminate individuals of that spe-
cies. If observers dedicate different amounts of
effort (time focused on one species) for differ-
ent species, that could lead to observer differ-
ences in detectability.

In our examples, we have conducted separate
modeling efforts for individual species. We
have done so because that is the traditional ap-
proach to estimating parameters of animal
populations. Species differences are often sus-
pected to be so large as to preclude simulta-
neous modeling of multiple species. However,
as noted by Nichols et al. (2000), it may be rea-
sonable to estimate detectability by groups of

species expected a priori to exhibit similar de-
tection probabilities. Similarly, we estimated
the influence on detectability separately for
each of the factors discussed (time of day, time
of season, and observer). Our approach could
be applied to a more general model capable of
examining multiple factors simultaneously and
detecting interactions among them (for exam-
ple, an interaction between time of day and
time of season). However, such an analysis
would require a larger data set than we used
here. Parsimonious modeling of detection
probability might include multiple species
with the same detection probabilities, observer
differences with parallel effects for different
species, and possibly interactions between spe-
cies, observers, and other factors. Such model-
ing of multiple species and interaction among
factors can be readily implemented using the
general modeling framework that we have pre-
sented and should be an area of active research.

The estimates for density were developed
from a small data set (155 limited-radius
counts). The two visits to each count location
should represent two samples from the same
population. Therefore we did not expect the es-
timates of density to differ between visits. In-
deed, although estimates of density differed
among species, they did not differ within spe-
cies for the two visits. For the purposes of this
article, we only dealt with sampling variance at
the actual locations. This was adequate for our
tests because we were testing estimated den-
sity for two visits to the same count locations.
We did not have independent estimates of den-
sity (e.g. spot-map data or nest locations) with
which we could compare these density esti-
mates. Future work should attempt to compare
estimates generated from this removal sam-
pling procedure to known density and to re-
sults of other estimation procedures (e.g. see
Tarvin et al. 1998).

Model assumptions. Assumption 1: there is
no change in the population of birds within the
detection radius during the point count. This
assumption of closure may not be met for some
species during a 10 min count. This should be
less of a problem for small breeding songbirds,
such as Wood Warblers, with their relatively
small territories and high singing rates. How-
ever for larger ranging species like Pileated
Woodpecker and American Crow, this assump-
tion is more likely to be violated. The model
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will work equally well for point counts of
shorter duration (e.g. 5 min) that are more like-
ly to meet the assumption of closure, provided
the count is divided into three or more
intervals.

Assumption 2: there is no double-counting of
individuals. The somewhat long duration of the
point counts used in this analysis (10 min) may
lead to violation of this assumption. However,
observers were trained to be conservative in this
regard. Similarly, there may have been identifi-
cation errors. Such phantom detections would
result in recording species that are not present
and inflating the number of individuals record-
ed for some species that are present (see Bart
and Schoultz 1984, Bart 1985). Whereas viola-
tions of assumptions 1 and 2 may present prob-
lems for this analysis, they are not unique to this
method; they are also necessary for virtually
any analysis of point-count data, even naı̈ve
analyses that do not adjust for detectability.

Assumptions 3 and 4: all members of group
1 are detected in the first interval; all members
of group 2 have a constant per minute proba-
bility of being detected. These two assump-
tions are likely to be violated to some degree.
This modeling device should not be interpreted
literally. With the available count data divided
into three time intervals, this was the best way
we could address the issue of heterogeneity of
detection probability. Our procedure included
model selection using AIC to choose between
models with one group (c 5 1) and models with
two groups. The critical parameter when esti-
mating abundance in the face of heterogeneous
detection probabilities among individuals is
the coefficient of variation of the distribution of
detection probabilities (Carothers 1973). Ca-
rothers (1973) was the first to note that this var-
iation could be modeled adequately using a
two-point distribution, and Pledger (2000) suc-
cessfully exploited this approach as well. Spe-
cifically, Pledger (2000) demonstrated that us-
ing a model with two groups (each with a
homogenous detection probability) was ade-
quate to provide an unbiased estimate of pop-
ulation size even when the population was
composed of many such groups. Our model
constrained group 1 to have a detection prob-
ability of one because our counts were only di-
vided into three intervals.

Another way in which these assumptions
may be violated is if the detection probability

varies through time during the count. For ex-
ample, even if there were two uniform groups,
members of group 2 could have higher detect-
ability in the fourth minute than in the eighth
minute, although it may not be easy to develop
a plausible biological story for such variation,
especially with likely variation in starting
times of different point counts. Even when as-
sumptions such as these are likely to be violat-
ed, use of this model-based approach is likely
to be far more robust than index methods that
assume counts to be a constant fraction of the
sampled populations (e.g. see Nichols and Pol-
lock 1983).

Assumption 5: if counts with limited-radius
are used, observers accurately assign birds to
within or beyond the radius used. In order to
estimate density, some measure of area sam-
pled is necessary. In this study, observers were
trained to estimate distance to birds and assign
each detection to within or beyond 50 m from
the observer. Even with training and experi-
ence, it is often difficult to estimate distances to
birds on the basis of hearing songs. This as-
sumption is also required for distance sam-
pling and virtually any method of density
estimation.

Recommendations and future work. We con-
structed this particular model with three time
intervals because this count procedure was rec-
ommended by Ralph et al. (1995). We hope this
will facilitate its use in analyzing existing data.
However, our model is flexible enough to ac-
commodate data collected in other ways. We
recommend that future surveys be designed to
include four or more time intervals of equal du-
ration. That would allow the use of full two-
point mixture models and would simplify the
mathematics (see Pledger 2000). For example, a
10 min point count divided into five intervals
of 2 min each would allow use of the more gen-
eral model and goodness-of-fit tests for all
three models (M, Mc, and the full two-point
mixture model). However, to avoid violation of
assumptions 1 and 2, short counts may be pref-
erable in some instances. Perhaps a 5 min count
divided into 1 min intervals would be
appropriate.

In addition, combining the removal approach
with other current methods may provide im-
proved estimates of detectability and density.
For example, a procedure that combines remov-
al sampling with distance sampling would al-
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low estimation of two separate components of
detectability: probability a bird sings and prob-
ability song is detected as a function of distance
form observer. Similarly, combining the remov-
al approach with double-observer sampling
could also address two components of detect-
ability: probability a bird sings and probability
a song is detected by at least one observer. Per-
haps all three techniques could be combined
into one study with known density to evaluate
the merits of each method and the various com-
binations thereof.
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APPENDIX. Scientific names and total counts for species in Figure 1.

Common name Scientific name

Countsa

x1 x2 x3

Ovenbird
Black-throated Green Warbler
Red-eyed Vireo
Black-throated Blue Warbler
Blue-headed Vireo
Dark-eyed Junco
Scarlet Tanager
Wood Thrush
Winter Wren
Hooded Warbler
Acadian Flycatcher
Veery
Pileated Woodpecker
Blackburnian Warbler
American Crow
Other species

Seiurus aurocapillus
Dendroica virens
Vireo olivaceus
Dendroica caerulescens
Vireo solitarius
Junco hyemalis
Piranga olivacea
Hylocichla mustelina
Troglodytes troglodytes
Wilsonia citrina
Empidonax virescens
Catharus fuscescens
Dryocopus pileatus
Dendroica fusca
Corvus brachyrhynchos

1,839
1,222

928
692
645
425
392
340
351
233
257
235
144
169
159

1,162

304
241
191
139
129

90
98
59
49
62
46
48
53
45
51

332

449
403
292
240
207
188
182

91
71

114
60
72

116
77
71

723
a xi is number of birds detected in the ith interval.
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